Hloubkové analýzy datových systémů, architektur a technologií z perspektivy production nasazení.
Lambda architektura kombinuje batch layer (Hadoop/Spark) pro complete, accurate views a speed layer (Storm/Flink) pro real-time aproximace. Kappa architektura simplifikuje design používáním pouze stream processing (Kafka + Flink). Analyzujeme: complexity vs flexibility, operational overhead, reprocessing capabilities, latency requirements. Kdy použít Lambda (compliance, audit trails) vs Kappa (jednodušší operace, event sourcing). Real-world příklady z LinkedIn, Netflix a Uber.
Detailní analýza Raft vs Paxos vs Byzantine fault tolerance. Raft (používá etcd, Consul): leader election, log replication, safety garantie. Paxos (Spanner, Chubby): Multi-Paxos optimalizace, performance charakteristiky. PBFT pro blockchain aplikace. Zkoumáme: failure scenarios, recovery mechanismy, throughput vs latency trade-offs, network partition handling. Praktické implementace v CockroachDB, TiDB a YugabyteDB. Kdy stačí eventual consistency.
Historie od tradičních MPP systémů (Teradata, Vertica) přes column-stores (ClickHouse, Druid) k moderním cloud-native řešením (Snowflake, BigQuery). Analyzujeme architektonické rozhodnutí: storage layer separation, vectorized execution, compression algorithms, query optimization. Nové trendy: real-time OLAP (Apache Pinot), HTAP systémy (TiDB), serverless analytics. Performance comparison: scan speed, aggregation throughput, concurrent queries handling.
Analýza Istio, Linkerd a Consul pro microservices komunikaci v datových systémech. Traffic management: intelligent routing, load balancing, circuit breaking. Observability: distributed tracing (Jaeger integration), metrics collection, service topology visualization. Security: mTLS encryption, authentication policies, authorization rules. Performance impact: latency overhead (typically 1-3ms), CPU utilization, memory footprint. Kdy service mesh má smysl vs library-based přístupy (Netflix Hystrix).
Kompletní srovnání object storage (S3, MinIO, Ceph) vs block storage (EBS, iSCSI) pro data lake aplikace. Architektura: metadata management, data placement algorithms, consistency models. Performance: throughput pro large files vs small files, random vs sequential access patterns, concurrent operations handling. Cost analysis: storage tiers (hot, warm, cold), data transfer costs, API pricing. Use cases: kdy použít object storage (analytics, backups) vs block storage (databases, VMs). Hybrid přístupy a tiering strategie.
Implementace Zero Trust principů v datové architektuře. Identity-based access: OAuth 2.0, SAML, JWT tokens, service accounts management. Network segmentation: micro-segmentation strategies, east-west traffic control. Data encryption: at-rest (AES-256), in-transit (TLS 1.3), end-to-end encryption challenges. Audit logging: comprehensive event tracking, SIEM integration, compliance requirements (GDPR, SOC 2). Practical implementation: HashiCorp Vault pro secrets, OPA (Open Policy Agent) pro authorization, Boundary pro privileged access.